Industrial engineering is also known as operations management, management science, systems engineering, or manufacturing engineering; a distinction that seems to depend on the viewpoint or motives of the user. Recruiters or educational establishments use the names to differentiate themselves from others. In healthcare, for example, industrial engineers are more commonly known as management engineers or health systems engineers.
One of the central principles in industrial engineering is the "system" concept. A system is any organization or business process in which people, materials, information, equipment, processes or energy interact in an integrated fashion. This high-level view of business operations enables industrial engineers to manage various industries. Therefore, industrial engineers apply their skills across a diverse set of sectors such as financial, healthcare, manufacturing, retail, logistics, aviation and education.
The term "industrial" in industrial engineering can be misleading. While the term originally applied to manufacturing, it has grown to encompass virtually all other industries and services as well. The various topics of concern to industrial engineers include management science, financial engineering, engineering management, supply chain management, process engineering, operations research, systems engineering, ergonomics, value engineering and quality engineering.
Whereas most engineering disciplines apply skills to very specific areas, industrial engineering is applied in virtually every industry (hence the term "industrial"). Examples of where industrial engineering might be used include designing a new loan system for a bank, streamlining operation and emergency rooms in a hospital, distributing products worldwide (referred to as Supply Chain Management), manufacturing cheaper and more reliable automobiles, and shortening lines (or queues) at a bank, hospital, or a theme park. Industrial engineers typically use computer simulation, especially discrete event simulation, for system analysis and evaluation.
One of the central principles in industrial engineering is the "system" concept. A system is any organization or business process in which people, materials, information, equipment, processes or energy interact in an integrated fashion. This high-level view of business operations enables industrial engineers to manage various industries. Therefore, industrial engineers apply their skills across a diverse set of sectors such as financial, healthcare, manufacturing, retail, logistics, aviation and education.
The term "industrial" in industrial engineering can be misleading. While the term originally applied to manufacturing, it has grown to encompass virtually all other industries and services as well. The various topics of concern to industrial engineers include management science, financial engineering, engineering management, supply chain management, process engineering, operations research, systems engineering, ergonomics, value engineering and quality engineering.
Whereas most engineering disciplines apply skills to very specific areas, industrial engineering is applied in virtually every industry (hence the term "industrial"). Examples of where industrial engineering might be used include designing a new loan system for a bank, streamlining operation and emergency rooms in a hospital, distributing products worldwide (referred to as Supply Chain Management), manufacturing cheaper and more reliable automobiles, and shortening lines (or queues) at a bank, hospital, or a theme park. Industrial engineers typically use computer simulation, especially discrete event simulation, for system analysis and evaluation.